

Victor's Update

- Design for Drogue Parachute (8 Gores)
 - Semi-Ellipsoid (Optimum drag to weight ratio)
 - Torodial (Half Doughnut/Higher drag to weight ratio)
 - Square
- Design for Main Parachute (12 Gores)
 - Semi-Ellipsoid (Optimum drag to weight ratio)
 - Torodial (Half Doughnut)
 - Hexagonal (Parasheet)

Semi-Ellipsoid

Hexagonal

Square

Torodial (Half Doughnut)

Victor's Update

- University of Florida Report
 - Vehicle Characteristics: Weight 74lbs, 14ft long, 6.14" in diameter
 - Drogue = 48" in diameter
 - Main = 168" in diameter
 - Kept impact under 75ft-lbs of force
 - Further Research was done on Richard Nakka's Exper
- Design for Drogue Parachute (8 Gores)
 - Semi-Ellipsoid (Optimum drag to weight ratio)

0

- Design for Main Parachute (12 Gores)
 - Semi-Ellipsoid (Optimum drag to weight ratio)
- 25 and 50 lb rockets

Requirements from ESRA

- Recovery uses a sensor for primary deployment
- An additional apogee sensor, with power supply, shall be used for backup deployment.
- Descent velocity should be between 50 and 100. Deployment of main recovery system near apogee results in zero points for recovery
- Maximum rocket landing speed shall not cause a hazard
- Ground or flight demonstration of the recovery system (apogee and lowaltitude) shall be conducted prior to the IREC. For a ground test, sensors will need to be functionally included in the demonstration (need to be "fooled" into deployment). A video of the demonstration should be submitted to ESRA or posted on a publicly available web site such as YouTube by March 31, 2014.
- Each rocket stage shall carry a transmitter to locate rocket

Design Overview

Design Elements

- Drogue Chute
- Parachute
- Shock Cord
- Charge Baffle
- Piston Ejection System
- Altimeters

Manufacturing

- Manufacturing Ourselves
 - Main and Drogue Parachutes
 - Piston Ejection System
 - Blast Caps
 - Charge Baffles (Charge Sizing)

Electrical Design

Recovery Electronics Board

- Two Commercial Altimeters
- Terminal Block
- Wires from Altimeters to Printed Circuit Board
- Two 9V battery (Independent)

Integrating and Shielding

- <u>Piston Ejection System</u>- expels hot air into the fuselage from the motor Parachute System to separate nosecone
- <u>Recovery Wadding</u>- separates hot particles from Piston Ejection system to keep parachute from burning
- <u>Charge Baffle</u>- eliminate the need for recovery wadding by trapping hot Particles and not burning the parachute
- <u>Redundancy</u>- 2 altimeters
- <u>Shackle</u>- attach chutes to motor mount
- <u>Phenolic tube-</u> provides path for ejection gasses to bypass the main parachute

Kinetic Energy

Calculations

- Each tethered section
- Velocities found on OpenRocket
- Calculated Values < Maximum Allowed

http://openrocket.sourceforge.net/shots/main.png

Component	Descent Rate (ft/s)	Mass (slugs)	Kinetic Energy (ft-lbf)
Nosecone	12.5	0.0979	7.744
Piston	12.5	0.0310	2.457
Upper Airframe	12.5	0.539	42.66
Lower Airframe	12.5	0.874	69.14

Test Results

- Ground based charge testing
- Subscale Launch Testing
- Scale Parachute Testing
- Full Scale Launch Testing

Drogue Testing

Safety and Failure Analysis

Recovery System Stress Analysis

- Drag Force Simulation
- Recovery Failure Analysis Failure Modes
 - 1st Category (Hardware)
 - 2nd Category (Electrical Components)
 - 3rd Category (Detonation of Ejection Charges)

Table 8: Recovery Failure Analysis				
Component	Max Rated Stress	Factor of Safety 2.77		
SW-1500 Swivel Link	1500 lbs			
9/16" Tubular Nylon Shock Cord	2000 lbs	3.69		
14" Type 361L Stainless Steel Quick Link	1400 lbs	2.58		
%" Braided Nylon Shroud Lines	550lbs/shroud line * 18 shroud lines = 9900 lbs	18.27		
3/8"-16 x 1-1/4" Type 304 Stainless Steel U-Bolt	1090 lbs	2.01		
Body Tube to Charge Baffle Interface	440.6lbs/screw * 4 screws = 1762.4lbs	3.25		

Drift Analysis

- Calculate Drift
 - Use online calculator
 - Predicts with winds aloft

Questions?

Deployment Bags

